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Abstract The classical relativistic least action principle is revisited from the vacuum field
theory approach. New physically motivated versions of relativistic Lorentz type forces are
derived, a new relativistic hadronic string model is proposed and analyzed in detail. The
reasonings of R. Feynman, who argued that the relativistic dynamical expressions obtain
true physical sense only with respect to the proper rest reference frames, are supported by
analyzing the dynamical stability of a relativistic charged string model.
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1 Introduction

1.1 The Classical Relativistic Electrodynamics Backgrounds: A Charged Point Particle
Analysis

It is commonly considered that classical electrodynamics is as the most fundamental physi-
cal theory, largely owing to the depth of its theoretical foundations and wealth of experimen-
tal verifications. Nowadays, in spite of the breadth and depth of theoretical understanding
of electromagnetics, there remain several fundamental open problems and gaps in compre-
hension related to the true physical nature of Maxwell’s theory when it comes to describing
electromagnetic waves as quantum photons in a vacuum. These start with the difficulties in
constructing a successful Lagrangian approach to classical electrodynamics that is free of
the Dirac-Fock-Podolsky inconsistency [10, 12, 50] and end with the problem of devising its
true quantization theory without such artificial constructions as a Fock space with indefinite
metrics, the Lorentz condition in “average”, and regularized “infinities” [10] of S-matrices.
Moreover, there are the related problems of obtaining a complete description of the structure
of a vacuum medium carrying the electromagnetic waves, and deriving a theoretically and
physically valid Lorentz force expression for a moving charged point particle, possessing
internal structure, and interacting with external electromagnetic field. It is well known [4,
26, 38, 50] that the relativistic least action principle for a point charged particle q in the
Minkovski space-time M4 � R×E

3 can be formulated on a time interval [t1, t2] ⊂ R (in the
light speed units) as

δS(t) = 0, S(t) :=
∫ τ(t2)

τ (t1)

(−m0dτ − q〈A, dx〉M4)

=
∫ s(t2)

s(t1)

(−m0〈ẋ, ẋ〉1/2
M4 − q〈A, ẋ〉M4)ds. (1.1)

Here δx(s(t1)) = 0 = δx(s(t2)) are the boundary constraints, m0 ∈ R+ is the so-called par-
ticle rest mass, the 4-vector x := (t, r) ∈ M4 is the particle location in M4, ẋ := dx/ds ∈
T (M4) is the particle 4-vector velocity with respect to a laboratory reference system K, pa-
rameterized by means of the Minkovski space–time parameters (s(t), r) ∈ M4 and related
to each other by means of the infinitesimal Lorentz interval relationship

dτ := 〈dx, dx〉1/2
M4 := ds〈ẋ, ẋ〉1/2

M4 , (1.2)

A ∈ T ∗(M4) is an external electromagnetic 4-vector potential, satisfying the classical
Maxwell equations [26, 38, 50], the sign 〈·, ·〉H means, in general, the corresponding scalar
product in a finite-dimensional vector space H and T (M4), T ∗(M4) are, respectively, the
tangent and cotangent spaces [1, 2, 22, 32, 56] to the Minkovski space M4. In particular,
〈x, x〉M4 := t2 − 〈r, r〉E3 for any x := (t, r) ∈ M4.

The subintegral expression in (1.1)

L(t) := −m0〈ẋ, ẋ〉1/2
M4 − q〈A, ẋ〉M4 (1.3)

is the related Lagrangian function, whose first part is proportional to the particle world line
length with respect to the proper rest reference system Kr and the second part is proportional
to the pure electromagnetic particle–field interaction with respect to the Minkovski labora-
tory reference system K. Moreover, the positive rest mass parameter m0 ∈ R+ is introduced
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into (1.3) as an external physical ingredient, also describing the point particle with respect
to the proper rest reference system Kr . The electromagnetic 4-vector potential A ∈ T ∗(M4)

is at the same time expressed as a 4-vector, constructed and measured with respect to the
Minkovski laboratory reference system K that looks, from physical point of view, enough
controversial, since the action functional (1.1) is forced to be extremal with respect to the
laboratory reference system K. This, in particular, means that the real physical motion of
our charged point particle, being realized with respect to the proper rest reference system
Kr , somehow depends on an external observation data [17, 19, 23–25, 27–29, 31, 33, 39–42,
44, 45, 47, 58, 59] with respect to the occasionally chosen laboratory reference system K.
This aspect was never discussed in the physical literature except for very interesting rea-
sonings by R. Feynman in [26], who argued that the relativistic expression for the classical
Lorentz force has a physical sense only with respect to the Euclidean rest reference system
Kr variables (τ, r) ∈ E

4 related to the Minkovski laboratory reference system K parameters
(r, t) ∈ M4 by means of the infinitesimal relationship

dτ := 〈dx, dx〉1/2
M4 = dt (1 − u2)1/2, (1.4)

where u := dr/dt ∈ T (E3) is the point particle velocity with respect to the reference system
K.

It is worth to point out here that to be correct, it would be necessary to include into the
action functional the additional part describing the electromagnetic field itself. But this part
is not taken into account, since there is generally assumed [7, 8, 18, 26, 36–38, 60] that
the charged particle influence on the electromagnetic field is negligible. This is true, if the
particle charge value q is very small but the support suppA ⊂ M4 of the electromagnetic
4-vector potential is compact. It is clear that in the case of two interacting with each other
charged particles the above assumption cannot be applied, as it is necessary to take into
account the relative motion of two particles and the respectively changing interaction energy.
This aspect of the action functional choice problem appears to be very important when one
tries to analyze the related Lorentz type forces exerted by charged particles on themselves.
We will return to this problem in a separate section below.

Having calculated the least action condition (1.1), we easily obtain from (1.3) the classi-
cal relativistic dynamical equations

dP/ds := −∂L(t)/∂x = −q∇x〈A, ẋ〉M4 , (1.5)

P := −∂L(t)/∂ẋ = m0ẋ〈ẋ, ẋ〉−1/2
M4 + qA,

where by P ∈ T ∗(M4) we denoted the common particle–field momentum of the interacting
system.

Now at s = t ∈ R by means of the standard infinitesimal change of variables (1.4), we
can easily obtain from (1.5) the classical Lorentz force expression

dp/dt = qE + qu × B (1.6)

with the relativistic particle momentum and mass

p := mu, m := m0(1 − |u|2)−1/2, |u|2 := 〈u,u〉E3 , (1.7)

respectively, the electric field

E := −∂A/∂t − ∇ϕ (1.8)
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and the magnetic field

B := ∇ × A, (1.9)

where we have expressed the electromagnetic 4-vector potential as A := (ϕ,A) ∈ T ∗(M4).

The Lorentz force (1.6), owing to our preceding assumption, means the force exerted by
the external electromagnetic field on our charged point particle, whose charge q is so negli-
gible that it does not exert the influence on the field. This fact becomes very important if we
try to make use of the Lorentz force expression (1.6) for the case of two charged interacting
with each other particles, since then one cannot assume that our charge q exerts negligi-
ble influence on other charged particle. Thus, the corresponding Lorentz force between two
charged particles should be suitably altered. Nonetheless, the modern physics [3, 6, 9–11,
16, 20, 21, 34, 35, 38, 48, 49, 55] did not make this naturally needed Lorentz force mod-
ification and there is used the classical expression (1.6). This situation was observed and
analyzed concerning the related physical aspects in [54], having shown that the electromag-
netic Lorentz force between two moving charged particles can be modified in such a way
that it ceases to be dependent on their relative motion contrary to the classical relativistic
case.

To our regret, the least action principle approach to analyze the Lorentz force structure
was in [54] completely ignored and that gave rise to some incorrect and physically not
motivated statements concerning mathematical physics backgrounds of the modern electro-
dynamics. To make the problem more transparent we will analyze it in the section below
from the vacuum field theory approach recently devised in [12–15, 52].

1.2 The Least Action Principle Analysis

Consider the least action principle (1.1) and observe that the extremality condition

δS(t) = 0, δx(s(t1)) = 0 = δx(s(t2)), (1.10)

is calculated with respect to the laboratory reference system K, whose point particle coor-
dinates (t, r) ∈ M4 are parameterized by means of an arbitrary parameter s ∈ R owing to
expression (1.2). Recalling now the definition of the invariant proper rest reference system
Kr time parameter (1.4), we obtain that at the critical parameter value s = τ ∈ R the action
functional (1.1) on the fixed interval [τ1, τ2] ⊂ R turns into

S(t) =
∫ τ2

τ1

(−m0 − q〈A, ẋ〉M4)dτ (1.11)

under the additional constraint

〈ẋ, ẋ〉1/2
M4 = 1, (1.12)

where, by definition, ẋ := dx/dτ, τ ∈ R.

The expressions (1.11) and (1.12) need some comments since the corresponding (1.11)
Lagrangian function

L(t) := −m0 − q〈A, ẋ〉M4 (1.13)

depends virtually only on the unobservable rest mass parameter m0 ∈ R+ and, evidently,
it has no direct impact on the resulting particle dynamical equations following from the
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condition δS(t) = 0. Nonetheless, the rest mass springs up as a suitable Lagrangian mul-
tiplier owing to the imposed constraint (1.12). To demonstrate this, consider the extended
Lagrangian function (1.13) in the form

L(t)
λ := −m0 − q〈A, ẋ〉M4 − λ(〈ẋ, ẋ〉1/2

M4 − 1), (1.14)

where λ ∈ R is a suitable Lagrangian multiplier. The resulting Euler equations look as fol-
lows

Pr := ∂L(t)
λ /∂ṙ = qA + λṙ, Pt := ∂L(t)

λ /∂ṫ = −qϕ − λṫ,

∂L(t)
λ /∂λ = 〈ẋ, ẋ〉1/2

M4 − 1 = 0, dPr/dτ = q∇r〈A, ṙ〉E3 − qṫ∇rϕ, (1.15)

dPt/dτ = q〈∂A/∂t, ṙ〉E3 − qṫ∂ϕ/∂t,

giving rise, owing to relationship (1.4), to the following dynamical equations:

d

dt
(λuṫ) = qE + qu × B,

d

dt
(λṫ) = q〈E,u〉E3 , (1.16)

where we denoted by

E := −∂A/∂t − ∇ϕ, B = ∇ × A (1.17)

the corresponding electric and magnetic fields. As a simple consequence of (1.16) one ob-
tains

d

dt
ln(λṫ) + d

dt
ln(1 − u2)1/2 = 0, (1.18)

being equivalent for all t ∈ R, owing to relationship (1.4), to the relationship

λṫ(1 − |u|2)1/2 = λ := m0, (1.19)

where m0 ∈ R+ is a constant, which could be interpreted as the rest mass of our charged
point particle q. Really, the first equation of (1.16) can be rewritten as

dp/dt = qE + qu × B, (1.20)

where we denoted

p := mu, m := λṫ = m0(1 − |u|2)−1/2, (1.21)

coinciding exactly with that of (1.4).
Thereby, we retrieved here all the results obtained in the section above, making use of

the action functional (1.11), expressed with respect to the rest reference system Kr un-
der constraint (1.12). During these derivations, we were faced with a very delicate incon-
sistency property of definition of the action functional S(t), defined with respect to the
rest reference system Kr , but depending on the external electromagnetic potential func-
tion A : M4 → T ∗(M4), constructed exceptionally with respect to the laboratory reference
system K. Namely, this potential function, as a physical observable quantity, is defined and,
respectively, measurable only with respect to the fixed laboratory reference system K. This,
in particular, means that a physically reasonable action functional should be constructed by
means of an expression strongly calculated within the laboratory reference system K by
means of coordinates (t, r) ∈ M4 and later suitably transformed subject to the rest reference
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system Kr coordinates (τ, r) ∈ E
4, respective for the real charged point particle q motion.

Thus, the corresponding action functional, in reality, should be from the very beginning
written as

S(τ) =
∫ t (τ2)

t (τ1)

(−q〈A, ẋ〉M4)dt, (1.22)

where ẋ := dx/dt, t ∈ R, being calculated on some time interval [t (τ1), t (τ2)] ⊂ R, suit-
ably related with the proper motion of the charged point particle q on the true time interval
[τ1, τ2] ⊂ R with respect to the rest reference system Kr and whose charge value is assumed
so negligible that it exerts no influence on the external electromagnetic field. Now the prob-
lem arises: how to compute correctly the variation δS(τ) = 0 of the action functional (1.22)?

To reply to this question we will turn to the Feynman reasonings from [26], where he ar-
gued, when deriving the relativistic Lorentz force expression, that the real charged particle
dynamics can be determined physically not ambiguously only with respect to the rest refer-
ence system time parameter. Namely, Feynman wrote: “. . .we calculate a growth �x for a
small time interval �t. But in the other reference system the interval �t may correspond to
changing both t ′ and x ′, thereby at the change of the only t ′ the suitable change of x will
be other . . . Making use of the quantity dτ one can determine a good differential operator
d/dτ, as it is invariant with respect to the Lorentz reference systems of transformations”.
This means that if our charged particle q moves in the Minkovski space M4 during the time
interval [t1, t2] ⊂ R with respect to the laboratory reference system K, its proper real and
invariant time of motion with respect to the rest reference system Kr will be respectively
[τ1, τ2] ⊂ R.

As a corollary of the Feynman reasonings, we arrive at the necessity to rewrite the action
functional (1.22) as

S(τ) =
∫ τ2

τ1

(−q〈A, ẋ〉M4)dτ, δx(τ1) = 0 = δx(τ2), (1.23)

where ẋ := dx/dτ, τ ∈ R, under the additional constraint

〈ẋ, ẋ〉1/2
M4 = 1, (1.24)

being equivalent to the infinitesimal transformation (1.4). Simultaneously the proper time
interval [τ1, τ2] ⊂ R is mapped on the time interval [t1, t2] ⊂ R by means of the infinitesimal
transformation

dt = dτ(1 + |ṙ|2)1/2, (1.25)

where ṙ := dr/dτ, τ ∈ R. Thus, we can now pose the true least action problem equivalent
to (1.23) as

δS(τ) = 0, δr(τ1) = 0 = δr(τ2), (1.26)

where the functional

S(τ) =
∫ τ2

τ1

[−W̄ (1 + |ṙ|2)1/2 + q〈A, ṙ〉E3 ]dτ (1.27)

is characterized by the Lagrangian function

L(τ ) := −W̄ (1 + |ṙ|2)1/2 + q〈A, ṙ〉E3 . (1.28)
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Here we denoted, for further convenience, W̄ := qϕ, being the suitable vacuum field [12,
51, 52, 54] potential function. The resulting Euler equation gives rise to the following rela-
tionships

P := ∂L(τ )/∂ṙ = −W̄ ṙ(1 + |ṙ|2)−1/2 + qA,
(1.29)

dP/dτ := ∂L(τ )/∂r = −∇W̄ (1 + |ṙ|2)1/2 + q∇〈A, ṙ〉E3 .

Now making use once more of the infinitesimal transformation (1.25) and the crucial dy-
namical particle mass definition [12, 51, 52, 54, 57] (in the light speed units)

m := −W̄ , (1.30)

we can easily rewrite equations (1.29) with respect to the parameter t ∈ R as the classical
relativistic Lorentz force:

dp/dt = qE + qu × B, (1.31)

where we denoted

p := mu, u := dr/dt,
(1.32)

B := ∇ × A, E := −q−1∇W̄ − ∂A/∂t.

Thus, we obtained once more the relativistic Lorentz force expression (1.31), but slightly
different from (1.6), since the classical relativistic momentum of (1.7) does not completely
coincide with our modified relativistic momentum expression

p = −W̄u, (1.33)

depending strongly on the scalar vacuum field potential function W̄ : M4 → R. But if we re-
call here that our action functional (1.23) was written under the assumption that the particle
charge value q is negligible and not exerting the essential influence on the electromagnetic
field source, we can make use of the result before obtained in [12, 51, 54], that the vac-
uum field potential function W̄ : M4 → R, owing to (1.31)–(1.33), satisfies as q → 0 the
dynamical equation

d(−W̄u)/dt = −∇W̄ , (1.34)

whose solution will be exactly the expression

−W̄ = m0(1 − |u|2)−1/2, m0 = − W̄
∣∣
u=0

. (1.35)

Thereby, we have arrived, owing to (1.35) and (1.33), to the almost full coincidence of our
result (1.31) for the relativistic Lorentz force with that of (1.6) under the condition q → 0.

The results obtained above and related inferences we will formulate as the following
proposition.

Proposition 1.1 Under the assumption of the negligible influence of a charged point parti-
cle q on an external electromagnetic field source a true physically reasonable action func-
tional can be given by expression (1.22), being equivalently defined with respect to the rest
reference system Kr in the form (1.23), (1.24). The resulting relativistic Lorentz force (1.31)
coincides almost exactly with that of (1.6), obtained from the classical Einstein type action
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functional (1.1), but the momentum expression (1.33) differs from the classical expression
(1.7), taking into account the related vacuum field potential interaction energy impact.

As an important corollary we make the following.

Corollary 1.2 The Lorentz force expression (1.31) should be, in due course, corrected in
the case when the weak charge q influence assumption made above does not hold.

Remark 1.3 Concerning the infinitesimal relationship (1.25) one can observe that it reflects
the Euclidean nature of transformations R � t � τ ∈ R.

In spite of the results obtained above by means of two different least action principles
(1.1) and (1.23), we must claim here that the first one possesses some logical controversies,
which may give rise to unpredictable, unexplainable and even nonphysical effects. Amongst
these controversies we mention:

i) the definition of Lagrangian function (1.3) as an expression, depending on the external
and undefined rest mass parameter with respect to the rest reference system Kr time τ ∈ R,

but serving as a variational integrand with respect to the laboratory reference system K time
t ∈ R;

ii) the least action condition (1.1) is calculated with respect to the fixed boundary con-
ditions at the ends of a time interval [t1, t2] ⊂ R, thereby the resulting dynamics becomes
strongly dependent on the chosen laboratory reference system K, which is, following the
Feynman arguments [26, 27], physically unreasonable;

iii) the resulting relativistic particle mass and its energy depend only on the particle
velocity in the laboratory reference system K, not taking into account the present vacuum
field potential energy, exerting not trivial action on the particle motion;

iv) the assumption concerning the negligible influence of a charged point particle on the
external electromagnetic field source is also physically inconsistent.

2 The Charged Point Particle Least Action Principle Revisited: The Vacuum Field
Theory Approach

2.1 A Free Charged Point Particle in the Vacuum Medium

We start now from the following action functional for a charged point particle q moving
with velocity u := dr/dt ∈ E

3 with respect to a laboratory reference system K :

S(τ) := −
∫ t (τ1)

t (τ2)

W̄dt, (2.1)

being defined on the time interval [t (τ1), t (τ2)] ⊂ R by means of a vacuum field
potential function W̄ : M4 → R, characterizing the intrinsic properties of the vac-
uum medium and its interaction with a charged point particle q, jointly with the con-
straint

〈ξ̇ , ξ̇ 〉1/2
E4 = 1, (2.2)

where ξ := (τ, r) ∈ E
4 is a charged point particle position 4-vector with respect to the

proper rest reference system Kr , ξ̇ := dξ/dt, t ∈ R. As the real dynamics of our charged
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point particle q depends strongly only on the time interval [τ1, τ2] ⊂ R of its own mo-
tion subject to the rest reference system Kr , we need to calculate the extremality condi-
tion

δS(τ) = 0, δr(τ1) = 0 = δr(τ2). (2.3)

As action functional (2.1) is equivalent, owing to (2.2) or (1.25), to the following:

S(τ) := −
∫ τ1

τ2

W̄ (1 + |ṙ|2)1/2dτ, (2.4)

where, by definition, ṙ := dr/dτ , |ṙ|2 := 〈ṙ , ṙ〉E3 , τ ∈ R, from (2.4) and (2.3) one easily
obtains that

p := −W̄ ṙ(1 + |ṙ|2)−1/2, dp/dτ = −∇W̄ (1 + |ṙ|2)1/2. (2.5)

Taking into account once more relationship (1.25) we can rewrite (2.5) equivalently
as

dp/dt = −∇W̄ , p := −W̄u. (2.6)

If to take into account the dynamic mass definition (1.30), (2.6) turns into the Newton dy-
namical expression

dp/dt = −∇W̄ , p = mu. (2.7)

Having observed now that (2.7) is completely equivalent to (1.34), we obtain right away
from (1.35) that the particle mass

m = m0(1 − |u|2)−1/2, (2.8)

where

m0 := − W̄
∣∣
u=0

(2.9)

is the so-called particle rest mass. Moreover, since the corresponding (2.4) Lagrangian func-
tion

L(τ ) := −W̄ (1 + |ṙ|2)1/2 (2.10)

is not degenerate, we can easily construct [1, 2, 12, 22, 32] the related conservative Hamil-
tonian function

H(τ ) = −(W̄ 2 − |p|2)1/2, (2.11)

where |p|2 := 〈p,p〉E3 , satisfying the canonical Hamiltonian equations

dr/dτ = ∂H(τ )/∂p, dp/dτ = −∂H(τ )/∂r (2.12)

and conservation conditions

dH(τ )/dt = 0 = dH(τ )/dτ (2.13)

for all τ, t ∈ R. Thereby, the quantity

E := (W̄ 2 − p2)1/2 (2.14)
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can be naturally interpreted as the point particle total energy.
It is important to note here that energy expression (2.14) takes into account both ki-

netic and potential energies, but the particle dynamic mass (2.8) depends only on its ve-
locity, reflecting its free motion in vacuum. Moreover, since the vacuum potential function
W̄ : M4 → R is not, in general, constant, we claim that the motion of our particle q with
respect to the laboratory reference system K is not, in general, linear and is with not constant
velocity,—the situation, which was already discussed before by R. Feynman in [27]. Thus,
we obtained the classical relativistic mass dependence on the freely moving particle velocity
(2.8), taking into account both the nonconstant vacuum potential function W̄ : M4 → R and
the particle velocity u ∈ E

3.

We would also like to mention here that the vacuum potential function W̄ : M4 → R

itself should be simultaneously found by means of a suitable solution to the Maxwell equa-
tion ∂2W/∂t2 − �W = ρ, where ρ ∈ R is an ambient charge density and, by definition,
W̄ (r(t)) := limr→r(t). W(r, t)|, with r(t) ∈ E

3 being the position of the charged point par-
ticle at a time moment t ∈ R. A more detailed description [51] of the vacuum field po-
tential W : M4 → R, characterizing the vacuum medium structure, is given in the Supple-
ment.

We return now to expression (2.1) and rewrite it in the following invariant form

S(τ) = −
∫ s(τ2)

s(τ1)

W̄ 〈ξ̇ , ξ̇ 〉1/2
E4 ds, (2.15)

where, by definition, s ∈ R parameterizes the particle world line related with the laboratory
reference system K time parameter t ∈ R by means of the Euclidean infinitesimal relation-
ship

dt := 〈ξ̇ , ξ̇ 〉1/2
E4 ds. (2.16)

It is easy to observe that at s = t ∈ R functional (2.15) turns into (2.1) and (2.2). The action
functional (2.15) is to be supplemented with the boundary conditions

δξ(s(τ1)) = 0 = δξ(s(τ2)), (2.17)

which are, obviously, completely equivalent to those of (2.3), since the mapping R � s �
t ∈ R, owing to definition (2.16) is one-to-one.

Having calculated the least action condition δS(τ) = 0 under constraints (2.17), one easily
obtains the same equation (2.6) and relationships (2.8), (2.14) for the particle dynamical
mass and its conservative energy, respectively.

2.2 The Charged Point Particle Electrodynamics

We would like to generalize the results obtained above for a free point particle in the vac-
uum medium for the case of a charged point particle q interacting with external charged
point particle qf , moving with respect to a laboratory reference system K. Within the vac-
uum field theory approach, devised in [12, 51, 52], it is natural to reduce the formulated
problem to that considered above, having introduced the reference system Kf moving with
respect to the reference system K with the same velocity as that of the external charged point
particle qf . Thus, if the external charged particle qf , considered with respect to the labora-
tory reference Kf , will be in rest, the test charged point particle q will be moving with the
resulting velocity u − uf ∈ T (E3), where, by definition, u := dr/dt, uf := drf /dt, t ∈ R,
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are the corresponding velocities of these charged point particles q and qf with respect to the
laboratory reference system K. As a result of these reasonings we can write the following
action functional expression

S(τ) = −
∫ s(τ2)

s(τ1)

W̄ 〈η̇f , η̇f 〉1/2
E4 ds, (2.18)

where, by definition, ηf := (τ, r − rf ) ∈ E
4 is the charged point particle q position coordi-

nates with respect to the rest reference system Kr and calculated subject to the introduced
laboratory reference system Kf , s ∈ R parameterizes the corresponding point particle world
line, being infinitesimally related to the time parameter t ∈ R as

dt := 〈η̇f , η̇f 〉1/2
E4 ds. (2.19)

The boundary conditions for functional (2.18) are taken naturally in the form

δξ(s(τ1)) = 0 = δξ(s(τ2)), (2.20)

where ξ = (τ, r) ∈ E
4. The least action condition δS(τ) = 0 jointly with (2.20) gives rise to

the following equations:

P := ∂L(τ )/∂ξ̇ = −W̄ η̇f 〈η̇f , η̇f 〉−1/2
E4 ,

(2.21)
dP/ds := ∂L(τ )/∂ξ = −∇ξ W̄ 〈η̇f , η̇f 〉1/2

E4 ,

where the Lagrangian function equals

L(τ ) := −W̄ 〈η̇f , η̇f 〉1/2
E4 . (2.22)

Having now defined the charged point particle q momentum p ∈ T ∗(E3) as

p := −W̄ ṙ〈η̇f , η̇f 〉−1/2
E4 = −W̄u (2.23)

and the induced external magnetic vector potential A ∈ T ∗(E3) as

qA := W̄ ṙf 〈η̇f , η̇f 〉−1/2
E4 = W̄uf , (2.24)

we obtain, owing to relationship (2.19), the relativistic Lorentz type force expression

dp/dt = qE + qu × B − q∇〈u,A〉E3 , (2.25)

where we denoted, by definition,

E := −q−1∇W̄ − ∂A/∂t, B = ∇ × A, (2.26)

being, respectively, the external electric and magnetic fields, acting on the charged point
particle q.

The result (2.25) contains the additional Lorentz force component

Fc := −q∇〈u,A〉E3 , (2.27)
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not present in the classical relativistic Lorentz force expressions (1.6) and (1.31), obtained
before. Moreover, from (2.23) one obtains that the point particle q momentum

p = −W̄u := mu, (2.28)

where the particle mass

m := −W̄ (2.29)

does not already coincide with the corresponding classical relativistic relationship of (1.7).
Consider now the least action condition for functional (2.18) at the critical parameter

s = τ ∈ R:

δS(τ) = 0, δr(τ1) = 0 = δr(τ2),
(2.30)

S(τ) := −
∫ τ2

τ1

W̄ (1 + |ṙ − ṙf |2
E3)

1/2dτ.

The resulting Lagrangian function

L(τ ) := −W̄ (1 + |ṙ − ṙf |2
E3)

1/2 (2.31)

gives rise to the generalized momentum expression

P := ∂L(τ )/∂ṙ = −W̄ (ṙ − ṙf )(1 + |ṙ − ṙf |2
E3)

−1/2 := p + qA, (2.32)

which makes it possible to construct [1, 2, 22, 32, 53] the corresponding Hamiltonian func-
tion as

H := 〈P, ṙ〉E3 − L(τ ) = −(W̄ 2 − |p + qA|2
E3)

1/2

− 〈p + qA,qA〉E3(W̄ 2 − |p + qA|2
E3)

−1/2, (2.33)

satisfying the canonical Hamiltonian equations

dP/dτ := ∂H/∂r, dr/dτ := −∂H/∂r, (2.34)

evolving with respect to the proper rest reference system time τ ∈ R parameter. When deriv-
ing (2.33) we made use of relationship (2.19) at s = τ ∈ R jointly with definitions (2.23) and
(2.24). Since the Hamiltonian function (2.33) is conservative with respect to the evolution
parameter τ ∈ R, owing to relationship (2.19) at s = τ ∈ R one obtains that

dH/dτ = 0 = dH/dt (2.35)

for all t, τ ∈ R. The obtained results can be formulated as the following proposition.

Proposition 2.1 The charged point particle electrodynamics, related with the least action
principle (2.18) and (2.20), reduces to the modified Lorentz type force equation (2.25), and
is equivalent to the canonical Hamilton system (2.34) with respect to the proper rest ref-
erence system time parameter τ ∈ R. The corresponding Hamiltonian function (2.33) is a
conservation law for the Lorentz type dynamics (2.25), satisfying the conditions (2.35) with
respect to both reference systems parameters t, τ ∈ R.
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As a corollary, the corresponding energy expression for electrodynamical model (2.25)
can be defined as

E := (W̄ 2 − |p + qA|2
E3)

1/2 + 〈p + qA,qA〉E3(W̄ 2 − |p + qA|2
E3)

−1/2. (2.36)

The energy expression (2.36) obtained above is a necessary ingredient for quantizing the
relativistic electrodynamics (2.25) of our charged point particle q under the external elec-
tromagnetic field influence.

3 A New Hadronic String Model: The Least Action Principle and Relativistic
Electrodynamics Analysis Within the Vacuum Field Theory Approach

3.1 A New Hadronic String Model Least Action Formulation

A classical relativistic hadronic string model was first proposed in [5, 30, 46] and deeply
studied in [4], making use of the least action principle and related Lagrangian and Hamil-
tonian formalisms. We will not discuss here this classical string model and will not comment
the physical problems accompanying it, especially those related to its diverse quantization
versions, but proceed to formulating a new relativistic hadronic string model, constructed
by means of the vacuum field theory approach, devised in [12, 51, 52]. The corresponding
least action principle is, following [4], formulated as

δS(τ) = 0, S(τ) :=
∫ s(τ2)

s(τ1)

ds

∫ σ2(s)

σ1(s)

W̄ (x(ξ))(|ξ̇ |2|ξ ′|2 − 〈ξ̇ , ξ ′〉2
E4)

1/2dσ ∧ ds, (3.1)

where W̄ : M4 → R is a vacuum field potential function, characterizing the interac-
tion of the vacuum medium with our string object, the differential 2-form d�(2) :=
(|ξ̇ |2|ξ ′|2 − 〈ξ̇ , ξ ′〉2

E4)
1/2dσ ∧ ds = 2

√
g(ξ)dσ ∧ ds, g(ξ) := det(gij (ξ)

∣∣
i,j=1,2

), |ξ̇ |2 :=
〈ξ̇ , ξ̇ 〉E4 , |ξ ′|2 := 〈ξ ′, ξ ′〉E4 , being related with the Euclidean infinitesimal metrics dz2 :=
〈dξ, dξ 〉E4 = g11(ξ)dσ 2 + g12(ξ)dσds + g21(ξ)dsdσ + g22(ξ)ds2 on the string, means [1,
4, 22, 56] the infinitesimal two-dimensional world surface element, parameterized by vari-
ables (σ, s) ∈ E

2 and embedded into the 4-dimensional Euclidean space-time with coor-
dinates ξ := (τ (σ, s), r)) ∈ E

4 subject to the proper rest reference system K, ξ̇ := ∂ξ/∂s,

ξ ′ := ∂ξ/∂σ are the corresponding partial derivatives. The related boundary conditions are
chosen as

δξ(σ (s), s) = 0 (3.2)

at string parameter σ(s) ∈ R for all s ∈ R. The action functional expression is strongly
motivated by that constructed for the point particle action functional (2.1):

S(τ) := −
∫ σ2

σ1

dl(σ )

∫ t (σ,τ2)

t (σ,τ1)

W̄ dt (τ, σ ), (3.3)

where the laboratory reference time parameter t (τ, σ ) ∈ R is related to the proper rest string
reference system time parameter τ ∈ R by means of the standard Euclidean infinitesimal
relationship

dt (τ, σ ) := (1 + |ṙ⊥|2(τ, σ ))1/2dτ, |ṙ⊥|2 := 〈ṙ⊥, ṙ⊥〉E3 , (3.4)
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with σ ∈ [σ1, σ2] ⊂ R, being a spatial variable parameterizing the string length measure
dl(σ ) on the real axis R, ṙ⊥(τ, σ ) := N̂ ṙ(τ, σ ) ∈ E

3 being the orthogonal to the string
velocity component, and

N̂ := (1 − |r ′|−2r ′ ⊗ r ′), |r ′|−2 := 〈r ′, r ′〉−1
E3 , (3.5)

being the corresponding projector operator in E
3 on the orthogonal to the string direction,

expressed for brevity by means of the standard tensor product “⊗” in the Euclidean space
E

3. The result of calculation of (3.3) gives rise to the following expression

S(τ) = −
∫ τ2

τ1

dτ

∫ σ2(τ )

σ1(τ )

W̄ [(|r ′|2(1 + |ṙ|2) − 〈ṙ , r ′〉E3 ]1/2dσ, (3.6)

where we made use of the infinitesimal measure representation dl(σ ) = 〈r ′, r ′〉1/2
E3 dσ, σ ∈

[σ1, σ2]. If now to introduce on the string world surface local coordinates (σ, s(τ, σ )) ∈
E

2 and the related Euclidean string position vector ξ := (τ, r(σ, s)) ∈ E
4, the string action

functional reduces equivalently to that of (3.1).
Below we will proceed to Lagrangian and Hamiltonian analyzing the least action condi-

tions for expressions (3.1) and (3.6).

3.2 Lagrangian and Hamiltonian Analysis

First we will obtain the corresponding to (3.1) Euler equations with respect to the special
[4, 22] internal conformal variables (σ, s) ∈ E

2 on the world string surface, with respect
to which the metrics on it becomes equal to dz2 = |ξ ′|2dσ 2 + |ξ̇ |2ds2, where 〈ξ ′, ξ̇ 〉E4 =
0 = |ξ ′|2 − |ξ̇ |2, and the corresponding infinitesimal world surface measure d�(2) becomes
d�(2) = |ξ ′|ξ̇ |dσ ∧ ds. As a result of simple calculations one finds the linear second order
partial differential equation

∂(W̄ ξ̇ )/∂s + ∂(W̄ξ ′)/∂σ = |ξ ′||ξ̇ |∂W̄/∂σ (3.7)

under the suitably chosen boundary conditions

ξ ′ − ξ̇ σ̇ = 0 (3.8)

for all s ∈ R. It is interesting to mention that (3.7) is of elliptic type, contrary to the case
considered before in [4]. This is, evidently, owing to the fact that the resulting metrics on
the string world surface is Euclidean, as we took into account that the real string motion is,
in reality, realized with respect to its proper rest reference system Kr , being not dependent
on the string motion observation data, measured with respect to any external laboratory
reference system K.

The differential equation (3.7) strongly depends on the vacuum field potential function
W̄ : M4 → R, which, as a function of the Minkovski 4-vector variable x := (t (σ, s), r) ∈ M4

of the laboratory reference system K, should be expressed by means of the infinitesimal
relationship (3.4) in the following form:

dt = 〈N̂∂ξ/∂τ, N̂∂ξ/∂τ 〉1/2

(
∂τ

∂s
ds + ∂τ

∂σ
dσ

)
, (3.9)

defined on the string world surface. The function W̄ : M4 → R itself should be simultane-
ously found by means of a suitable solution to the Maxwell equation ∂2W/∂t2 − �W = ρ,
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where ρ ∈ R is an ambient charge density and, by definition, W̄ (r(t)) := limr→r(t). W(r, t)|,
with r(t) ∈ E

3 being the position of the string element with the proper rest reference coor-
dinates (σ, τ ) ∈ E

2 at a time moment t = t (σ, τ ) ∈ R.

We proceed now to constructing the dynamical Euler equations for our string model,
making use of action functional (3.6). It is easy to calculate that the generalized momentum

p := ∂L(τ )/∂ṙ = −W̄ (|r ′|2ṙ − r ′〈r ′, ṙ〉E3)

[|r ′|2(|ṙ|2 + 1) − 〈r ′, ṙ〉2
E3 ]1/2

= −W̄ (|r ′|2N̂ ṙ)

[|r ′|2(|ṙ|2 + 1) − 〈r ′, ṙ〉2
E3 ]1/2

(3.10)

satisfies the dynamical equation

dp/dτ := δL(τ )/δr = −[|r ′|2(|ṙ|2 + 1) − 〈r ′, ṙ〉2
E3 ]1/2∇W̄

− ∂

∂σ

{
W̄ (1 + |ṙ|2T̂ )r ′

[|r ′|2 + |ṙ|2〈r ′, T̂ r ′〉]1/2

}
, (3.11)

where we denoted by

L(τ ) := −W̄ [(|r ′|2(1 + |ṙ|2) − 〈ṙ , r ′〉2
E3 ]1/2 = −W̄ [|r ′|2 + |ṙ|2〈r ′, T̂ r ′〉]1/2 (3.12)

the corresponding Lagrangian function and by

T̂ := 1 − |ṙ|−2ṙ ⊗ ṙ , |ṙ|−2 := 〈ṙ , ṙ〉−2
E3 , (3.13)

the related dynamic projector operator in E
3. The Lagrangian function is degenerate [4, 22],

satisfying the obvious identity

〈p, r ′〉E3 = 0 (3.14)

for all τ ∈ R. Concerning the Hamiltonian formulation of the dynamics (3.11) we construct
the corresponding Hamiltonian functional as

H :=
∫ σ2

σ1

(〈p, ṙ〉E3 − L(τ ))dσ

=
∫ σ2

σ1

W̄ r ′,2[(|r ′|2(1 + |ṙ|2) − 〈ṙ , r ′〉2
E3 ]1/2dσ

=
∫ σ2

σ1

[W̄ 2|r ′|2 − p2]1/2dσ, (3.15)

satisfying the canonical equations

dr/dτ := δH/δp, dp/dτ := −δH/δr, (3.16)

where

dH/dτ = 0, (3.17)
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holding only with respect to the proper rest reference system Kr time parameter τ ∈ R.

Now making use of identity (3.14) the Hamiltonian functional (3.15) can be equivalently
represented in the symbolic form as

H =
∫ σ2

σ1

|W̄ r ′ ± ip|E3dσ, (3.18)

where i := √−1. Moreover, concerning the result obtained above we need to mention here
that one can not construct the suitable Hamiltonian function expression and relationship of
type (3.17) with respect to the laboratory reference system K, since expression (3.18) is not
defined on the whole for a separate laboratory time parameter t ∈ R locally dependent both
on the spatial parameter σ ∈ R and the proper rest reference system time parameter τ ∈ R.

Thereby, one can formulate the following proposition.

Proposition 3.1 The hadronic string model (3.1) allows, on the related world surface, the
conformal local coordinates, with respect to which the resulting dynamics is described by
means of the linear second order elliptic equation (3.7). Subject to the proper rest reference
system Euclidean coordinates the corresponding dynamics is equivalent to the canonical
Hamiltonian equations (3.16) with Hamiltonian functional (3.15).

We proceed now to construct the action functional expression for a charged string under
an external magnetic field, generated by a point velocity charged particle qf , moving with
some velocity uf := drf /dt ∈ E

3 subject to a laboratory reference system K. To solve this
problem we make use of the trick of Sect. 2 above, passing to the proper rest reference
system Kr with respect to the relative reference system Kf , moving with velocity uf ∈ E

3.

As a result of this reasoning we can write down the action functional:

S(τ) = −
∫ τ2

τ1

dτ

∫ σ2(τ )

σ1(τ )

W̄ [|r ′|2(1 + |ṙ − ṙf |2) − 〈ṙ − ṙf , r ′〉2
E3 ]1/2dσ, (3.19)

giving rise to the following dynamical equation

dP/dτ := δL(τ )/δr = −[|r ′|2(1 + |ṙ − ṙf |2) − 〈ṙ − ṙf , r ′〉2
E3 ]1/2∇W̄

+ ∂

∂σ

{
W̄ (1 + |ṙ − ṙf |2T̂f )r ′

[|r ′|2(1 + |ṙ − ṙf |2) − 〈ṙ − ṙf , r ′〉2
E3 ]1/2

}
, (3.20)

where the generalized momentum

P := −W̄ [|r ′|2N̂(ṙ − ṙf )]
[|r ′|2(1 + |ṙ − ṙf |2) − 〈ṙ − ṙf , r ′〉2

E3 ]1/2
(3.21)

and the projection operator in E
3

T̂f := 1 − |ṙ − ṙf )|−2 (ṙ − ṙf ) ⊗ (ṙ − ṙf ). (3.22)

Having defined by

p := −W̄ (|r ′|2N̂ ṙ)

[|r ′|2(1 + |ṙ − ṙf |2) − 〈ṙ − ṙf , r ′〉2
E3 ]1/2

(3.23)
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the local string momentum and by

qA := W̄ (|r ′|2N̂ ṙf )

[|r ′|2(1 + |ṙ − ṙf |2) − 〈ṙ − ṙf , r ′〉2
E3 ]1/2

(3.24)

the external vector magnetic potential, (3.20) reduces to

dp/dτ = qṙ × B − q∇〈A, ṙ〉E3 − q
∂A

∂τ

− [|r ′|2(1 + |ṙ − ṙf |2) − 〈ṙ − ṙf , r ′〉2
E3 ]1/2∇W̄

+ ∂

∂σ

{
W̄ (1 + |ṙ − ṙf |2T̂f )r ′

[|r ′|2(1 + |ṙ − ṙf |2) − 〈ṙ − ṙf , r ′〉2
E3 ]1/2

}
, (3.25)

where q ∈ R is a charge density, distributed along the string length, B := ∇ × A means the
external magnetic field, acting on the string. The expression, defined as

E := −q
∂A

∂τ
− [|r ′|2(1 + |ṙ − ṙf |2) − 〈ṙ − ṙf , r ′〉2

E3 ]1/2∇W̄

+ ∂

∂σ

{
W̄ (1 + |ṙ − ṙf |2T̂f )r ′

[|r ′|2(1 + |ṙ − ṙf |2) − 〈ṙ − ṙf , r ′〉2
E3 ]1/2

}
, (3.26)

similar to the charged point particle case, models a related electric field, exerted on the string
by the external electric charge qf . Making use of the standard scheme, one can derive, as
above, the Hamiltonian interpretation of dynamical equations (3.20), but which will not be
here discussed.

4 Conclusion

Based on the vacuum field theory approach, devised recently in [12, 51, 52], we revisited the
alternative charged point particle and hadronic string electrodynamics models, having suc-
ceeded in treating their Lagrangian and Hamiltonian properties. The obtained results were
compared with classical ones, owing to which a physically motivated choice of a true model
was argued. Another important aspect of the developed vacuum field theory approach con-
sists in singling out the decisive role of the related rest reference system Kr , with respect to
which the relativistic object motion, in reality, realizes. Namely, with respect to the proper
rest reference system evolution parameter τ ∈ R all of our electrodynamics models allow
both the Lagrangian and Hamiltonian physically reasonable formulations, suitable for the
canonical procedure. The deeper physical nature of this fact remains, up today, as we as-
sume, not enough understood. We would like to recall here only very interesting reasonings
by R. Feynman who argued in [26, 27] that the relativistic expressions have physical sense
only with respect to the proper rest reference systems. In a sequel of our work we plan to
analyze our relativistic electrodynamic models subject to their quantization and make a step
toward the related vacuum quantum field theory of infinite many particle systems.
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5 Supplement: The Maxwell Electromagnetism Theory

5.1 The Vacuum Field Theory Look and Interpretation

We start from the following field theoretical model [12] of the microscopic vacuum medium
structure, considered as some physical reality imbedded into the standard three-dimensional
Euclidean space reference system marked by three spatial coordinates r ∈ E

3, endowed, as
before, with the standard scalar product 〈·, ·〉E3 , and parameterized by means of the scalar
temporal parameter t ∈ R. First we will describe the physical vacuum medium endowing it
with an everywhere smooth enough four-vector potential function (W,A) : M4 → R × E

3,

defined in the Minkovski space M4 and naturally related to light propagation properties.
The material objects, imbedded into the vacuum medium, we will model (classically here)
by means of the scalar charge density function ρ : M4 → R and the vector current density
J : M4 → E

3, being also everywhere smooth enough functions.

(i) The first field theory principle regarding the vacuum we accept is formulated as follows:
the four-vector function (W,A) : M4 → R × E

3 satisfies the standard Lorentz type
continuity relationship

1

c

∂W

∂t
+ 〈∇,A〉E3 = 0, (5.1)

where, by definition, ∇ := ∂/∂r is the usual gradient operator.
(ii) The second field theory principle we accept is a dynamical relationship on the scalar

potential component W : M4 → R:

1

c2

∂2W

∂t2
− ∇2W = ρ, (5.2)

assuming the linear law of the small vacuum uniform and isotropic perturbation prop-
agations in the space-time, understood here, evidently, as a first (linear) approximation
in the case of weak enough fields.

(ii) The third principle is similar to the first one and means simply the continuity condition
for the density and current density functions:

∂ρ/∂t + 〈∇, J 〉E3 = 0. (5.3)

We need to note here that the vacuum field perturbations velocity parameter c > 0, used
above, coincides with the vacuum light velocity, as we are trying to derive successfully from
these first principles the well-known Maxwell electromagnetism field equations, to analyze
the related Lorentz forces and special relativity relationships. To do this, we first combine
(5.1) and (5.2):

1

c2

∂2W

∂t2
= −

〈
∇,

1

c

∂A

∂t

〉
E3

=
〈
∇,∇W

〉
E3

+ ρ,

whence 〈
∇,−1

c

∂A

∂t
− ∇W

〉
E3

= ρ. (5.4)

Having put, by definition,

E := −1

c

∂A

∂t
− ∇W, (5.5)
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we obtain the first material Maxwell equation

〈∇,E〉E3 = ρ (5.6)

for the electric field E : M4 → E
3. Having now applied the rotor-operation ∇× to expres-

sion (5.5) we obtain the first Maxwell field equation

1

c

∂B

∂t
− ∇ × E = 0 (5.7)

on the magnetic field vector function B : M4 → E
3, defined as

B := ∇ × A. (5.8)

To derive the second Maxwell field equation we will make use of (5.8), (5.1) and (5.5):

∇ × B = ∇ × (∇ × A) = ∇〈∇,A〉E3 − ∇2A

= ∇
(

−1

c

∂W

∂t

)
− ∇2A = 1

c

∂

∂t

(
−∇W − 1

c

∂A

∂t
+ 1

c

∂A

∂t

)
− ∇2A

= 1

c

∂E

∂t
+

(
1

c2

∂2A

∂t2
− ∇2A

)
. (5.9)

We have from (5.5), (5.6) and (5.3) that
〈
∇,

1

c

∂E

∂t

〉
E3

= 1

c

∂ρ

∂t
= −1

c
〈∇, J 〉E3 ,

or 〈
∇,− 1

c2

∂2A

∂t2
− ∇

(
1

c

∂W

∂t

)
+ 1

c
J

〉
E3

= 0. (5.10)

Now making use of (5.1), from (5.10) we obtain that

〈
∇,− 1

c2

∂2A

∂t2
− ∇

(
1

c

∂W

∂t

)
+ 1

c
J

〉
E3

=
〈
∇,− 1

c2

∂2A

∂t2
+ ∇〈∇,A〉E3 + 1

c
J

〉
E3

=
〈
∇,− 1

c2

∂2A

∂t2
+ ∇2A + ∇ × (∇ × A) + 1

c
J

〉
E3

=
〈
∇,− 1

c2

∂2A

∂t2
+ ∇2A + 1

c
J

〉
E3

= 0. (5.11)

Thereby, (5.11) yields

1

c2

∂2A

∂t2
− ∇2A = 1

c
(J + ∇ × S) (5.12)

for some smooth vector function S : M4 → E
3. Here we need to note that continuity equa-

tion (5.3) is defined, concerning the current density vector J : M4 → R
3, up to a vorticity

expression, that is J � J + ∇ × S and (5.12) can finally be rewritten as

1

c2

∂2A

∂t2
− ∇2A = 1

c
J. (5.13)
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Having substituted (5.13) into (5.9) we obtain the second Maxwell field equation

∇ × B − 1

c

∂E

∂t
= 1

c
J. (5.14)

In addition, from (5.8) one also finds the magnetic no-charge relationship

〈∇,B〉E3 = 0. (5.15)

Thus, we have derived all the Maxwell electromagnetic field equations from our three
main principles (5.1), (5.2) and (5.3). The success of our undertaking will be more im-
pressive if we adapt our results to those following from the well-known relativity theory
in the case of point charges or masses. Below we will try to demonstrate the corresponding
derivations based on some completely new physical conceptions of the vacuum medium first
discussed in [12, 54].

Corollary 5.1 It is interesting to analyze a partial case of the first field theory vacuum prin-
ciple (5.1) when the following local conservation law for the scalar potential field function
W : M4 → R holds:

d

dt

∫
t

Wd3r = 0, (5.16)

where t ⊂ E
3 is any open domain in space E

3 with the smooth boundary ∂t for all t ∈ R

and d3r is the standard volume measure in E
3 in a vicinity of the point r ∈ t . Having

calculated expression (5.16) we obtain the following equivalent continuity equation

1

c

∂W

∂t
+

〈
∇,

v

c
W

〉
E3

= 0, (5.17)

where ∇ := ∇r is, as above, the gradient operator and v := dr/dt is the velocity vector of a
vacuum medium perturbation at point r ∈ E

3 carrying the field potential quantity W. Com-
paring now equations (5.1), (5.17) and using (5.3) we can make the suitable very important
identifications:

A = v

c
W, J = ρv, (5.18)

well known from the classical electrodynamics [38] and superconductivity theory [26, 36].
Thus, we are faced with a new physical interpretation of the conservative electromagnetic
field theory when the vector potential A : M4 → E

3 is completely determined via expression
(5.18) by the scalar field potential function W : M4 → R. It is also evident that all the
Maxwell electromagnetism filed equations derived above hold as well in the case (5.18), as
it was first demonstrated in [12].

Consider now the conservation equation (5.16) jointly with the related integral “vacuum
momentum” conservation condition

d

dt

∫
t

(
Wv

c2

)
d3r = 0, t |t=0 = 0, (5.19)

where, as above, t ⊂ E
3 is for any time t ∈ R an open domain with the smooth boundary

∂t , whose evolution is governed by the equation

dr/dt = v(r, t) (5.20)
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for all r ∈ t and t ∈ R, as well as by the initial state of the boundary ∂0. As a result of
relation (5.19) one obtains the new continuity equation

d(vW)

dt
+ vW 〈∇, v〉E3 = 0. (5.21)

Now making use of (5.17) in the equivalent form

dW

dt
+ W 〈∇, v〉E3 = 0,

we finally obtain a very interesting local conservation relationship

dv/dt = 0 (5.22)

on the vacuum matter perturbations velocity v = dr/dt, which holds for all values of the
time parameter t ∈ R. As it is easy to observe, the obtained relationship completely coincides
with the well-known hydrodynamic equation [43] of ideal compressible liquid without any
external exertion, that is, any external forces and field “pressure” are equally identical to
zero. We received a natural enough result where the propagation velocity of the vacuum
field matter is constant and equals exactly v = c, that is the light velocity in the vacuum, if
to take into account the starting wave equation (5.2) owing to which the small vacuum field
matter perturbations propagate in the space with the light velocity.
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